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1 Introduction

The mass digitization of video has elevated automated storage and retrieval to a grand
challenge. Video sequences can store a vast amount of useful information, but redun-
dancy between individual frames is a problem when analyzing, browsing, or searching
video. Presenting the video sequence in a compact manner is a difficult challenge because
eliminating redundancy could also eliminate content. The selection of static keyframes
to represent a shot sequence is commonly used in commercial products, including Vi-
rage [26], Imagine Products [19] and Excalibur [6], for indexing as well as for presen-
tation of retrieval results. Islip [10] allows users to group several keyframes into story
paragraphs. These techniques are insufficient for revealing much of the content in a video
sequence. Informedia [7] condenses a clip by selecting one frame from each sequence of
frames in which a key word is spoken. The resulting set of frames, called Video Skims,
typically represent 1/20 to 1/6 of the frames of the entire sequence. Therefore, while
revealing more content than just keyframes, Video Skims are often long. In some do-
mains it may be more appropriate to collect all the frames of each shot into one image,
called a mosaic, and present the static mosaics to the user. This method overcomes
the redundancy problem while revealing camera motion content more readily than other
techniques. The use of mosaics for video browsing has been investigated in [23], [24],
and [25]. By constructing mosaics, more efficient representations can be used in various
other tasks and applications, including video analysis, editing and manipulation, surveil-
lance, digital libraries, interactive low-bit rate video transmission, video conferencing,
and high-resolution still images.

For video analysis, processing can be done more efficiently on the mosaic that rep-
resents the sequence of frames rather than processing individual frames and integrating
the results. With mosaics, video edits can be applied to a whole sequence of frames more
rapidly than if edits were applied to individual frames. In surveillance, each frame of a
scene often covers a limited field of view, but by combining several frames of a scene into
a mosaic, more can be viewed at once. In digital libraries, video data takes up a large

amount of space, so mosaicking can be used to increase data compression. Instead of us-



ing reference frames for compression, mosaics can increase the predictability of individual
frames, thus lowering the number of bits needed to encode individual frames. Similar
techniques are used in low-bit-rate video transmission, where background information is
first transmitted, and then frames predicted from the background are sent. This requires
less information than if the frames are predicted from one individual frame. In video
conferencing, whiteboards or blackboards can be scanned to produce better images than
those that are taken with wide-angle shots.

Two forms of mosaic outputs are commonly used. One form is the static mosaic,
also referred to as a “salient still” [24]. Static mosaics attempt to represent the entire
sequence of frames with one image. All the frames from one sequence are aligned into
one coordinate system and integrated into one image using temporal filters. Dynamic
mosaics present frames in such a manner that each new area of a scene in a frame is
added to the previous mosaic as the video runs [8]. This approach creates a sequence of
mosaics which are updated after each new frame. In this work, we focus on the generation
of static mosaics.

One novel feature of our technique is that rather than using computation-intensive
image processing techniques to align frames of a video sequence, we estimate the camera
motion by averaging motion vectors encoded in the MPEG compression scheme. The

method is therefore faster than methods that rely on image processing.

2 Previous Work

To build a mosaic one must be able to align frames from a sequence and then integrate
them into one image. This section will review techniques used to align frames and inte-
grate them into an image. Typically, researchers accomplish frame alignment as follows:
A model for frame-to-frame transformation is assumed; they then solve for unknowns
in the model by matching points between the frames. By contrast, we compute camera
motion from MPEG motion vectors and invoke the geometry of image transformations
to generate a pixel mapping that will align frames with a reference frame, usually the
first frame in a sequence. Morimoto and Chellappa [16] also construct mosaics using

camera motion computation, but find the camera motion by tracking feature points. We
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review frame alignment methods as well as work that has used MPEG motion vectors

for estimation of camera motion for tasks other than mosaicking.

2.1 Frame Alignment

Techniques for frame alignment vary as to the model that is used to determine alignment
between a reference frame and any other frame. Most techniques use 2D transformations
(affine, projective, or quadratic) to align frames. 2D transformations are effective on
static scenes such as a view of a city skyline, where most of the motion can be measured
in translational parameters.

In these 2D methods the estimation model relies on features within frames. One
widely used technique is hierarchical direct registration [1, 8, 9, 20-23]. This method
compares the image intensities of the reference frame with those of the other frames. A
Laplacian pyramid is constructed for each pair of frames using the pixel luminance inten-
sities. For each layer in the pyramid the sum of squared differences (SSD) is computed
and is used to refine the model estimates in the next layer of the pyramid.

Assume F(u) represents the region which will be registered, where u is used to repre-
sent the entire motion field within that region. X = (z, y) denotes the spatial image po-
sition of a point, I the (Laplacian pyramid) image intensity and u(z)— (u(z(z,y),v(z,y))
the image velocity at that point. Then

E(u) =3 _(I(z,1) = (I(x — u(2),1 - 1))* (1)

X
FE(u) is minimized using a Gauss-Newton optimization technique. At each pyramid

level the procedure is iterated until the error is below a threshold. This is done from top to
bottom starting with a coarse representation of the frames. This method can accurately
measure both small and large movements between frames. For small displacements it
is not necessary to use hierarchical minimization of SSD; instead, gradient descent or
Levenberg-Marquardt optimization can be used [20, 22]. These methods find locally
optimal solutions.

Optical flow has also been used as a basis to compute frame transformation parameters
[12, 13, 24]. With salient video stills [24], the authors estimate the affine transformation
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needed to align a pair of frames of a video sequence. They model pan and tilt by gradient
descent applied to the optical flow. The affine parameters are computed using a Gaussian
pyramid constructed from a pair of frames. This method is effective on static scenes. In
Video Orbits [13], “projective flow” is computed from the optical flow. Optical flow can
be expanded to solve for as many as eight parameters, six for affine transformation, and
two used for chirping, to model projective effects. The error between the model and
optical flow is minimized. This method is effective on static scenes.

In [5], a 2D method based on features segments each frame into a foreground and
background. Instead of using the whole frame of pixel intensities to perform SSD min-
imization to estimate the motion parameters, only the background region is processed.
Dufaux and Moscheni [5] use the Gaussian pyramid of two background regions to estimate
global motion as a model for camera motion. They use a phased approach. First the
translational components are calculated, then affine components, and finally perspective
components. This phased approach is more robust, and with a Gaussian pyramid the

local minima problem is avoided because the search is non-exhaustive.

2.2 MPEG camera motion analysis

Since we compute camera motion from MPEG motion vectors, we review some work
by researchers who also use these motion vectors, even if they do not apply them to
mosaics. The main benefit of such techniques is decreased processing time per video
sequence since the video is not decoded before processing. Most analyze the motion
vectors within the MPEG video stream to compute the global motion of a shot [14, 15, 17].
In [15], motion vectors are passed through median filters to eliminate vectors that could
be considered noise. Next, stationary frames are discarded, since no motion is present
in such a frame. The remaining frames are grouped into regular (camera motion over
a static background) and irregular groups, the latter representing global motion that
doesn’t accurately estimate the independently moving objects. To estimate the global
motion, a least square approach is used with an affine model to fit the actual motion
vectors. Regular frames characterize the motion within a shot. A bucketing technique

can be used for post-production where a low-bit-rate file references the high-bit-rate
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version.

In [17], a technique for indexing video based on content and camera motion is devel-
oped. First the video is segmented into shots by analyzing the I frames of an MPEG
sequence. Changes in color histograms determine shot boundaries. To index the video,
each segment is described by camera movement. Motion vectors from the P and B frames
of the MPEG stream are extracted, and the vectors for a frame are categorized into a
finite set of motion classes. Training techniques can detect stationarity, object motion,
panning, tracking, zooming, and ambiguous motion between two P or B frames. The or-
dering of these classes for the frames in a sequence is used to categorize the motion. This
is a computationally inexpensive technique but it does not accurately estimate camera
motion.

In [14], camera motion was used for video indexing. Global motion is estimated using
a least-square technique to match estimated affine parameters and actual motion vectors
for the MPEG stream. Large discrepancies between the estimated and actual vectors are
discarded and a second least-squares estimate is computed using the remaining vectors.
This technique does not account for independently moving objects. Movement over large
uniform areas is hard to gauge because of the amount of noise that can be present in an

MPEG stream.

2.3 Frame Integration

After the motion parameters are estimated, the frames are aligned and integrated into
one image. Overlapping pixels are either averaged or dropped entirely. The averaging
technique includes (1) averaging all the intensity values (but this usually creates ghost
images of objects not correctly aligned), (2) applying a temporal filter based on the
temporal domain of the images or a predefined weighted temporal median or average,
which can show the progression of moving objects [4, 8, 18, 24]. Methods to select
one pixel of the overlapping images include (1) selecting the pixel with the most recent

information [3, 5, 8], (2) selecting the pixel that has best resolution and quality [3, 8].
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Figure 1: System diagram.

3 System Overview

A video file typically contains several scenes and/or shots. Our system builds a separate
mosaic for each scene so that the user can be presented with a sequences of mosaicked
images as a summary. To do this, our system requires modules for segmentation into
shots, camera motion estimation, frame alignment, frame integration, and a goodness
heuristic to judge the quality of the final mosaic. Scene change detection provides a
file containing the indexes of the frames that begin a new scene, and is obtained by the
scene change detection techniques described in [11]. The camera motion parameters are
computed for each shot using the MPEG motion vectors (see Appendix), frames from a
shot are aligned (Section 3.1), integrated into a static mosaic (Section 3.2) taking special
care to handle zooms (Section 3.3), and a montage of all the mosaics is assembled into
a single image (Section 4). This representation gives a preview of the video that can be

browsed quickly. The components of the system are shown in Figure 1.

3.1 Frame Alignment

Our system aligns frames directly from camera motion estimates, bypassing any compu-
tationally intensive registration of frames. To determine the parameters needed to align
different frames from a video sequence, the camera motion is computed by using the
technique described in the Appendix. The technique is based on averaging the motion
vectors from the macro blocks within each frame of an MPEG sequence. From the cam-
era motion parameters the displacement between two consecutive frames in a sequence
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Figure 2: Cylinder diagram.

can be computed. For each successive pair of frames the pan, tilt, and zoom differences
are found. To find the displacement between an initial reference frame and any other
frame, the angular displacements (pan, tilt) between consecutive frames are summed up,
while scale changes are performed to correct for zoom changes. The camera motion is
in terms of pixel length. Thus each frames is aligned directly with the current reference
frame using the constructed mosaic as the reference.

In our work the first frame of a sequence is used as the reference frame. This is a
good selection if there are clean breaks between shots; otherwise, if fades are detected
for shot transitions, a later frame should be used because the fade may produce a false
detection of camera motion which could misalign subsequent frames in the sequence. The
frame buffer in which the frames are aligned is modeled as a plane wrapped around the
center of projection and no 3D translation or rotation will be computed. To simplify the
alignment, the focal length of the reference frame is used for successive frames. Thus
individual corrected frames are projected on a common cylindrical surface (Figure 2).
The details of this computation are provided in the Appendix. The mosaic of a sequence
is the visual representation of the unfolding of the frames of the sequence onto a flat

plane.



3.2 Frame Integration

Once the frames have been aligned on the cylinder (Figure 2), the next step is the
selection of pixels to be put into the resulting mosaic. To integrate multiple frames into
a single mosaic image, the first step is to find the size of the mosaic. Each frame has
associated pan, tilt, and zoom increments that align it with the previous frame. The
minimal bounding box is found around the upper right hand point and lower left hand
point of each frame in the sequence. Overlapping pixels can be filtered in two ways.
First, the overlapping pixel that is closest to its frame center is used in the mosaic, on
the basis that pixels closer to frame centers tend to be less distorted than those toward
the edges. For each new frame, frame pixels that belong to the area of overlap with the
mosaic and are close to the frame center are used to replace previous mosaic pixels. This
is good for static scenes where the camera moves over scenery, but moving objects may
be removed. To show the progression of moving objects in a shot, a second option is to
average all the overlapping pixels together. The appearance that is produced is that of
the object fading into the background; where it was at the begining of a clip is nearly

transparent and where it was at the end of a clip is nearly opaque (Figure 6).

3.3 Zooming

In our resolution frame buffer model, frames with different focal lengths are handled by
projecting them onto the same cylinder as the reference frame. If during a sequence
there is a zoom-in, those frames in which zooming occurs must be scaled down so that
they can be aligned with frames which have been projected onto the reference cylinder
(Figure 2). Zoom-out frames are enlarged as they appear on the reference cylinder. For a
zoom sequence the frames that are zoomed in are more accurate. Thus these frames are
selected when constructing the final image and the pixels of the overlapped unzoomed

frames are discarded, if the absolute pixel selection method is chosen.
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Figure 3: Panoramic view from a control tower, constructed from a 4-second clip.

3.4 Goodness heuristic

Not every video shot produces a useful mosaic. The motion parameters are prone to error;
moving objects sometimes confuse the camera motion computations (see Appendix). A
heuristic i1s used to determine whether it is better to present the mosaic of a sequence
or an individual keyframe. The heuristic value is determined by the square root of the
sum of squared differences of luminance intensity values at the adjoining pixels along the

boundaries between frames (Figure 4).

HeuristicValue = \/Z[I(x, y)— I(z+ Az, y + Ay))? (2)

If areas of the mosaic corresponding to different frames don’t match well, there will be
large discontinuities at the boundaries between these areas. Above a certain threshold of
discontinuity, the mosaic becomes confusing and is less useful than individual keyframes.

A good threshold was determined empirically.

4 Results

To evaluate the performance of this mosaicking technique we ran it on several video
clips from our in-house database that demonstrate the advantages and disadvantages

of our system. The length of the video sequences ranged from 3 seconds to 2 minutes.



Figure 4: Panoramic view of a conference room sequence of 600 frames. Black lines
illustrate the boundaries between areas of selected frames. In this mosaic every tenth
frame was considered for mosaicking.

Figure 5: Mosaic with pixel dropping filtering applied on a 80-frame sequence.

The example in Figure 3 shows how good the results can be when there is little or no
movement of objects in the video sequence. In the video sequence that produced this
result there were 117 frames, all of which were considered when creating the mosaic.
The camera pans from left to right. The mosaic created in Figure 4 came from a video
sequence in which the camera moved left to right followed by a zoom-in. One can see the
zoom by the bounding boxes on the left side. For this video sequence the computation
of the zoom parameter from the MPEG motion vectors was accurate enough to produce
a nearly seemless integration of video frames. The correlations of the MPEG encodings
used to produce the motion vectors gave better results in some parts of the sequence
than others.

While camera motion is revealed in a mosaic, whether objects moving in the shot
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Figure 7: Montage of a 60-second video clip.

are present may not be revealed. By using an averaging technique for image integration,
the progression of an object can be detected. In Figure 5 and Figure 6, a mosaic is
constructed for a sequence in which the camera pans left to right while tracking a player
as he is backing up from the ball. While this action is evident with a pixel averaging
technique, it would not be identified if the frames were integrated by selecting one of the
overlapping pixels (Figure 6).

One way of browsing a long video clip is to examine representative frames throughout
a sequence. While content is revealed, camera motion is not. Our system can produce
a montage of all the mosaics that reveals both content and camera motion (Figure 7).
This allows users to browse the video sequence quickly. This type of representation allows
users to get a better sense of the action that is present in a video sequence than by looking
at representative frames. The montage clearly reveals the presence of any panning and

tilting present in the video sequence. Zooming is harder to detect because all zoomed
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Figure 9: 10th and 275th frames of the third mosaic in Figure 8.

frames are scaled to align with the representative frames. If the field of view does not
change from the representative frames the zoom will only enhance what is present in the
first frame. After careful examination a zoom sequence can be detected in the second
mosaic on the first row. The deer on the right are sharper than those in the center.
Video shots that did not produce good alignments were represented by the keyframes.
For example in Figure 7 the third image of the first row in the montage is a keyframe.
The mosaic was discarded in favor of the first frame of the sequence.

In Figure 8, an observer can detect that most of the motion is present in the first
row. In this row the second mosaic contains black space. Black space will be present in
a mosaic when the camera motion combines panning and tilting. The third (from left)

mosaic is a pan. The height was shortened to keep the width the same as that of the
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Figure 10: Montage of a 30-second clip.

keyframe. Mosaicking has problems with handling fades between shots. Without a clean
shot break, the faded in/out frames will blur the final mosaic if pixels from these frames
are selected during integration. The second mosaic of Figure 8 handles a case that other
mosaic techniques have problems with, a forward moving camera. In this scene a camera
flies over a canyon. The later frames are reduced and projected to the same image plane
as the first (Figure 9). In Figure 10, the first four mosaics were not aligned well enough,
so the first frame from each scene was used in the montage; while the last mosaic is a
tilting sequence in which the width is shortened to keep the height the same as that of
the keyframes.

5 Conclusion

By summarizing sequences of video frames into one mosaic image, more information can
be viewed at once than by browsing keyframes. Long panning and tilting sequences
become easier and faster to understand when viewing mosaics than when viewing the
video sequentially or with keyframes. Our technique for constructing mosaics is novel in
two respects. First, we explicitly compute the camera motion between frames and are
able to construct a mosaic image because we know where the image planes of the camera
are in space at the times when the frames are taken. The mosaic construction consists of
projecting the pixels from the individual image planes onto a common cylindrical surface

which is flattened to display the mosaic (Figure 2). Second, we use the motion vector
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information contained in the MPEG encoding of the video to compute the camera motion
between frames, including the zoom factor. By using the MPEG vectors to determine
pan, tilt, and zoom, no other image processing is needed to align the frames. Therefore
this method is faster at creating mosaics than methods that rely on image processing
techniques. Ultimately, this method will be useful for browsing and indexing large video

databases.
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6 Appendix

The image flow field induced by the camera motion generally depends not only on the
camera motion parameters, but also on the 3D structure of the scene. Recovering both
the 3D structure and the camera motion from the flow field is an active area of research
which is starting to show some success [2]. However, this research is of limited use for
broadcast videos and movies. Sequences where a camera merely scans a scene of fixed
objects are quickly boring and are uncommon. We would like to recover general camera
motions and reconstruct the scene when humans and animals keep moving around in the
field of view while the camera operator plays with the zoom of the camera, but this is
clearly a difficult problem. Unfortunately, this is the most common situation in broadcast
video. Most situations become ambiguous, and only common-sense knowledge can point
to the correct answer. This is the situation we encounter in everyday life, where we move
around in the middle of things that may or may or may not themselves move around. In
some cases, our own interpretation of what is moving may be wrong. For example, we
can see the moon cruising along between the tree tops beside our car at night, and may
remember how puzzling this “behavior” was when we were children. In other instances,
as when sitting in a train in a station while another train seem to be starting next to us,
we are not sure if we are moving in a fixed scene or the other train is starting. We cannot
expect an artificial vision system which does not perform any object recognition and
scene interpretation to be less confused than humans are in some ambiguous situations.

Therefore, our attempt to solve the problem of recovering camera motion when moving

entities are present in the scene makes use of the following simplifying assumptions:

1. When a camera (fixed or moving) views regions that seem to be moving with respect
to each other, the background on which the camera motion is computed corresponds

to the largest area of the field of view consistent with a camera motion.

2. The camera motion model is restricted to a combination of pan, tilt and zoom,

with no translation and no swing.

The first assumption is an attempt to make a choice in the “train station” ambiguity
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described above. If the majority of the field of view is moving consistently and in a
way consistent with a camera motion (this motion could be zero), it is assumed to
correspond to the scene’s background, and the camera motion is computed using this
background. Improvements would include giving more weight to the periphery of the
field of view (because moving objects being tracked are generally centered in the image)
and giving less weight to compact regions (because they tend to be moving objects and
not background). The fact that a region is not moving is not a clue that it is the
background because moving objects of interest have no image flow when they are tracked
and kept at the center of the image.

The second assumption limits the degrees of freedom of the model of camera motion.
One reason for doing this is to limit chances of misinterpretation in the presence of
moving objects. For example, a human subject lifting up one arm and lowering the other
could be interpreted as a camera swing because image flow vectors are going up on one
side of the image and down on the other. Without the freedom to accept swing, the arm
motions are not interpreted as due to camera motion. When two persons walk toward
each other, the image flow generated on the persons could be interpreted as due to a
camera translating around two still persons and progressively aligning itself with the two
persons. With a model that does not allow camera translation, this case has a greater
chance of being correctly interpreted.

These camera motion restrictions are not unreasonable in view of the type of data we
are analyzing. In videos produced for broadcasting, camera translations are rare, partly
because they are difficult to accomplish without jitter. Camera rotations are compara-
tively easy to produce smoothly with a shoulder camera or using a tripod. Therefore the
most common camera motions are rotations. Among them, only pan and tilt rotations
are common. Tripods generally do not allow rotations around the camera optical axis
(swing). This motion is not comfortable to the viewer who gets the impression he is
falling sideways. On the other hand, zoom actions are very common, and need to be
recovered. Against the objection that zooming is not strictly speaking a camera motion,
it can be argued that part of the camera is moving (distances in the lens assembly vary).

In terms of image generation, zooming corresponds to variation in the focal length of the
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camera, i.e. a change in the distance of the image plane with respect to the projection
center.

What happens in cases where camera translation is present and we use a motion
model that assumes that translation is zero? If the scene is approximately planar or has
small variations in depth compared to the average scene depth, rotation and translation
are difficult to disambiguate, and the image flow field can be approximately explained

by a pure camera rotation instead of a translation.

6.1 Scene Points

In the time interval between two frames of a video clip, the camera may be subjected
to angular motions around its center of projection O. These are called tilt () around
an axis QY parallel to the rows of the camera sensor, and pan (p) around an axis OX
parallel to the columns of the sensor. Swing (around an axis perpendicular to the sensor)
is assumed to be zero, as discussed above. In addition, a zooming action may take place,
obtained by a change of camera focal length from f to f’, characterized by a zoom factor
(=11,

A world point M = (XY, 7Z) moves with respect to the camera frame of reference
(OX,0Y,07) to a new position M’ = (X', Y, Z') as this frame of reference is rotated
(note that the zoom factor modifies the perspective projection, not the displacement of
world points relative to the camera reference frame). Since the pan and tilt can only be
small in the 1/30 second separating the capture of the two frames, their sines and cosines
can be approximated by their first-order terms in the equations for the camera rotation.

The transformation of point M into point M’ is expressed by a rotation matrix which

can be approximated for small pan and tilt angles as

X' 1 0 —p X
Y |~|l0o 1 ¢ Y (3)
A p —t 1 Z

We introduce an additional approximation. From Eq. 3, the relation between 7' and
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Z s
Z'=pX =Y+ 7Z=7(1+pX/Z —1Y]Z) (4)
The terms pX/Z and tY/Z are of order 2 compared to the term 1 if X/Z and Y/Z
are small, since p and ¢ are themselves small angles. This is the case if the camera has a
long focal length or if we consider only scene points that project relatively close to the
image center (because, as explained below, X/7 = z/f and Y/Z = y/f, where z and

y are the coordinates of the image projections of the scene points). Then this relation

reduces to 7' = 7, and Eq. 3 can be rewritten as

X' 1 0 —p X
Y |~|0 1 ¢ Y
Z 0 0 1 Z

6.2 Perspective Projection

The point m = (x,y) is the perspective projection of M with a pinhole camera of focal
length f. The point m’ = (2/,y') is the perspective projection of M’ with a new focal
length f'. Therefore

x/ yZ
M:(X,Y,Z):(T,yT,Z)
M = (X V", 7) = (B2 Y2 4

77 77

z'Z zZ
7' 10 —p F
vVZ | ~ yZ
Zl~lo1 0 || o (5)
Z 0 0 1 Z

The column vectors of the left and right hand sides are both proportional to Z. We
can then divide both sides by Z. We also factor f and f’, and obtain

z!' {1 0 —pf !
~ 6
M f{owf]f "
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or simply

y' = (y+ f1)

6.3 Motion Vectors

We define a vector mm’ as the image motion vector corresponding to the motion of the
world point M from M to M’. Its coordinates are dx = 2’ —x, dy = y' —y. The previous

equations can be rewritten as

de = ((=1)z—=(fp (7)
dy = (C=1Ly+¢fi (8)

Note that generally the focal length f for the first image is unknown. We are able to
retrieve the products fp and ft rather than p and f. These are the arcs traced by an arm
of length f rotating by the pan angle p and the tilt angle ¢. For cylindrical mosaicking,
these arcs are precisely the quantities that are needed, rather than the corresponding
angles. In the following, we describe how to compute the quantities fp, ft, and ( by

averaging the field of motion vectors over the image.

6.4 Averaging over a whole frame

In an MPEG clip the motion vectors m;m’; are known, as well as their positions m/ at
the centers of macroblocks. Therefore we can write equations such as Eqs. 7 and 8 for
each macroblock for which a motion vector is defined.

With enough motion vectors (more than one), the unknowns ( — 1, ({fp) and ({ ft)
can be computed, and once the zoom factor ( is found, fp and ft can be deduced. Rather
than attempting to solve a large overdetermined linear system to retrieve the unknowns,
we take advantage of the fact that the coordinates x and y where the motion vectors
(dz,dy) are defined are distributed on a regular grid.

First note that if we sum Eqs. 7 and 8 over the N points of the grid of macroblocks,
the equations become
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dry = (C—=1)> xi— N(fp
N N
Sdys = (C—1)> yi+ NSt
N N

The terms z; are the z coordinates of the macroblocks in the image. These coordinates
are positive on the right of the image center and negative on the left of the image center,

and the positive and negative terms cancel out in the sum )"y x;. Thus

_ _ENdei__@
fr = NC -7 (9)

dy; dy
B o

Above we used the fact that 3+ Yy dz; is the mean of the motion vector component
dzx over the grid of macroblocks, denoted by dz. We use this notation for all means.

We were able to write Y-y x; = 0 because the function f(z) = z is an odd function for
the variable z, and any odd function f(z) of  would have the same property > f(z; =0
when sampled and summed over a regular grid. We now use this property to extract the
unknown (¢ from the equations. To eliminate the pan and tilt terms and preserve the
terms containing ¢, we multiply both sides of Eq. 7 by an odd function f(z), and Eq. 8 by

an odd function f(y), then we sample and sum the results over the grid of N macroblocks.

We obtain

;f(l’i)dfﬂi = (C—l)%:flfif(flfi)—Cfp;f(xi)
Yo S(yidy) = (C=1) D il (yi) + Iy f(wi)

Since f(z) is taken to be an odd function, 3" f(z;) = 0. We obtain




The zoom factor { can be computed from either of these two equations, or from the

average of the two solutions:

(11)

C=1405 (f(l’)dl' N f(y)dy)

f(z)  yf(y)

In practice, we use f(z) = sin(kz). The factor k is selected to give little or no weight
to the motion vectors at the edges of the image, which tend to be noisy. In addition, as
was noted above, the approximation of Eq. 4 by Z’ = Z is more accurate if we discard

points far from the image center.

6.5 Keeping the Grid Symmetrical with Missing Data

It is important to remember that in the above derivation sums over samplings of odd
functions cancel out only when the summation is performed over a symmetric grid. In
practice there are grid points where the motion vector coordinates dz; and dy; are not
available: they have been found to belong to a moving object, or they belong to a region
that has little texture. Also, motion vectors may not be known because the corresponding
macroblocks are intracoded: the MPEG encoding process does not define a motion vector
for them. If we ignored only these macroblocks when we computed sums, we would no
longer be summing over a symmetric grid. To maintain summation over a symmetric grid,
we must also ignore the macroblocks that are symmetric to these discarded macroblocks
in the image.

Therefore, our implementation consists of first flagging the macroblocks that cannot
be used. When a function that is odd with respect to z is required, a grid symmetrical
with respect to the y axis must be used; thus a flag must also be set for the macroblocks
that are symmetrical and have the same y coordinates but the opposite = coordinates.
Averages are computed only over the macroblocks that have not been flagged. The

approach is identical when the roles of # and y are swapped.

6.6 From MPEG encoding to camera motion

In MPEG encoding, for each block a motion vector represents the displacement between

the block and the region that best correlates with it in another frame which may be several
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frames away. This displacement is expressed in half pixels in the x and y directions. We
have found that motion vector data between consecutive frames are much less noisy than
others; therefore we use only subvectors when we have a choice. For an I frame or a
P frame, we use the backward predicted motion vector of the previous B frame. For a
B frame, we use whatever motion vector is available, and we average the forward and
backward predicted motion vectors when both are available. Details are provided in [11]

and [15] with slightly different implementations.

6.7 Composition of camera motions over sequences of frames

The zoom factor ( is the ratio between the focal length f’ of the present frame and the
focal length f of the previous frame. Therefore, if we want to find the change of zoom
over several frames, we need to compose zoom factors between pairs of frames; these
should be composed by multiplication. If we find a zoom factor (; ; between frame 1 and
frame 2, and a zoom factor (33 between frame 2 and frame 3, the zoom factor between
frame 1 and frame 3 is (13 = (1,2(2,3.

Pan and tilt between two frames are arcs of motion with a radius equal to the focal
length at the first of the two frames. If we find a pan arc (fip12) between frame 1 and
frame 2, and a pan arc (fyp23) between frame 2 and frame 3, we would like to cumulate
pan angles, or equivalently pan arcs around a circle. We cannot just add these two arcs,
because they correspond to two different radii f; and f,. Instead, we have to normalize
all the arcs to the same focal length, for example the general focal length f;. We can use
the zoom ratios to perform this normalization:

h 1
f2 (1,2

Taking f;, the focal length of the first frame of the shot, as the reference radius with

f1P2,3 = f2P2,3 = f2p2,3

unit length, fip, 3 is simply the angle of pan of the camera in radians.

What is the cumulated angle of pan p; 4 between frame 1 and frame 47

1 1
fipra = fipre + —(fopas) + —— f3psa
Ci2 C1,2C2,3
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or more generally

Jipi = Z (ngml

with (;; = [, ;- Here we have reverted back to the simpler notation, where (; is the
zoom factor and (fp); is the pan arc from frame ¢ to frame ¢ + 1 (with the first frame
counted as frame 1).

Similarly, for the camera tilt we have

fiti; = Z (é—t)l

These are the cumulated arcs in the pan and tilt of the camera motion around a
sphere of radius equal to the initial camera focal length. They can be used to build a
spherical mosaic of a scene. The problem with a spherical mosaic is that for large angles
it cannot be shown on a sheet of paper without distortion. However, generally the tilt
angle is small, and the mosaic can be approximated by a cylindrical mosaic which can

easily be flattened.
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